Effects of Tributyltin Chloride on Cybrids with or without an ATP Synthase Pathologic Mutation
نویسندگان
چکیده
BACKGROUND The oxidative phosphorylation system (OXPHOS) includes nuclear chromosome (nDNA)- and mitochondrial DNA (mtDNA)-encoded polypeptides. Many rare OXPHOS disorders, such as striatal necrosis syndromes, are caused by genetic mutations. Despite important advances in sequencing procedures, causative mutations remain undetected in some patients. It is possible that etiologic factors, such as environmental toxins, are the cause of these cases. Indeed, the inhibition of a particular enzyme by a poison could imitate the biochemical effects of pathological mutations in that enzyme. Moreover, environmental factors can modify the penetrance or expressivity of pathological mutations. OBJECTIVES We studied the interaction between mitochondrially encoded ATP synthase 6 (p.MT-ATP6) subunit and an environmental exposure that may contribute phenotypic differences between healthy individuals and patients suffering from striatal necrosis syndromes or other mitochondriopathies. METHODS We analyzed the effects of the ATP synthase inhibitor tributyltin chloride (TBTC), a widely distributed environmental factor that contaminates human food and water, on transmitochondrial cell lines with or without an ATP synthase mutation that causes striatal necrosis syndrome. Doses were selected based on TBTC concentrations previously reported in human whole blood samples. RESULTS TBTC modified the phenotypic effects caused by a pathological mtDNA mutation. Interestingly, wild-type cells treated with this xenobiotic showed similar bioenergetics when compared with the untreated mutated cells. CONCLUSIONS In addition to the known genetic causes, our findings suggest that environmental exposure to TBTC might contribute to the etiology of striatal necrosis syndromes. CITATION López-Gallardo E, Llobet L, Emperador S, Montoya J, Ruiz-Pesini E. 2016. Effects of tributyltin chloride on cybrids with or without an ATP synthase pathologic mutation. Environ Health Perspect 124:1399-1405; http://dx.doi.org/10.1289/EHP182.
منابع مشابه
Acute toxicity of triorganotin compounds: different specific effects on the energy metabolism and role of pH.
Triorganotin compounds exhibit several modes of toxic action on the energy metabolism in energy-transducing membranes. The inhibition of the adenosine triphosphate (ATP) synthase and the hydroxide/chloride-antiport have been extensively investigated, but debate still exists on whether further mechanisms are relevant. In this work, two possible further effects have been investigated: inhibition ...
متن کاملATP-driven stepwise rotation of FoF1-ATP synthase.
FoF1-ATP synthase (FoF1) is a motor enzyme that couples ATP synthesis/hydrolysis with a transmembrane proton translocation. F1, a water-soluble ATPase portion of FoF1, rotates by repeating ATP-waiting dwell, 80 degrees substep rotation, catalytic dwell, and 40 degrees -substep rotation. Compared with F1, rotation of FoF1 has yet been poorly understood, and, here, we analyzed ATP-driven rotation...
متن کاملStudy on Tributyltin Chloride Accumulation Factors in Fish Tissue by Analysis of Variance
Organotin compounds have been found different application in industries, agricultures and pharmacological sciences via their various physical and biological specifications. One of the most important applications of these compounds, especially tributyltin TBT is in marine antifouling paints and coatings. Concern about the accumulation of tributyltin compounds on fish and shellfish and the advers...
متن کاملDmm021774 1441..1455
Adipogenesis is accompanied by differentiation of adipose tissuederived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects ...
متن کاملPositive contribution of pathogenic mutations in the mitochondrial genome to the promotion of cancer by prevention from apoptosis.
The role of mitochondrial dysfunction in cancer has been a subject of great interest and much ongoing investigation. Although most cancer cells harbor somatic mutations in mitochondrial DNA (mtDNA), the question of whether such mutations contribute to the promotion of carcinomas remains unsolved. Here we used trans-mitochondrial hybrids (cybrids) containing a common HeLa nucleus and mtDNA of in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 124 شماره
صفحات -
تاریخ انتشار 2016